Obsah
Základný koncept
Hele-Shawov tok
DLA, fraktály a multifraktály
Teoretické prístupy k DLA
Fraktálové drenážne systémy
Aplikácie DLA & FDS
Galéria
Applet
Literatúra a Linky
O tejto kapitole



Ostatné kapitoly
Lindenmayerove systémy
Modelovanie ekosystémov
Dawkinsove biomorfy
Reakčno-difúzne modely
Difúzne ohraničené zhlukovanie
Voronoiove diagramy
Časticové systémy
Fibbonaciho čísla a zlatý rez


Hlavne menu
 O nás
 Tutoriály
 Archiv


Literatúra a Linky

Literatúra

  • Witten, T. A. and Sander, L. M.: Diffusion limited aggregation, a kinetic critical phenomena. Physical Review Letters. 47 (1981), pp. 1400-1403.
  • Saffman, P. G., Taylor, G. I.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more visous fluid. Proc. Royal Society, 245(1958), p. 312-329.
  • Hastings, M. B., Levitov, L. S.:Laplacian growth as one-dimensional turbulence. Physica D: Nonlinear Phenomena, 116 (1-2), 244-252 (1998).
  • Lin, S., Kernighan, B. W.: An Effective Heuristic Algorithm for the Traveling Salesman Problem. Operations Research 21, 498 (1973).
  • Durbin, R., Willshaw, D.:An Analogue Approach to the Travelling Salesman Problem Using an Elastic Net Method. Nature 326, 689 (1987).
  • Telfar, G.: Generally Applicable Heuristics for Global Optimisation: An Investigation of Algorithm Performance for the Euclidean Traveling Salesman Problem. M.Sc. Thesis, Victoria University of Wellington, New Zealand, October 1994.
  • Goldberg, E. D.:Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Massachusetts (1989).
  • Zbigniew M.:Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag (1994).
  • Yoshiyuki, U., Yoshiki, K.: New Method of Solving the Traveling Salesman Problem Based on Real Space Renormalization Theory. Physical Review Letters 75, 1683 (1995).
  • Santos, J. G., Moreno, J. A.: A Heuristic Algorithm Based on Diffusion-Limited Aggregation for Solving the Traveling Salesman Problem. Proceedings World Multiconference on Systemics, Cybernetics and Informatics SCI’98, Vol 3, pp.717-723 (1998).
  • Meakin. P.: A new model for biological pattern formation. Journal of Theoretical Biology, 118:101-113 (1986).
  • Matsushita M., Fujikawa. H.: Diffusion-limited growth in bacterial colony formation. Physica A, 168:498-508 (1990).
  • Fujikawa H.,Matsushita M.: Bacterial fractal growth in the concentration field of nutrient. Journal of the Physical Society of Japan, 60(1):88-94 (1991)
  • Kaandorp, J.: Modeling growth forms of biological objects using fractals. PhD thesis, University of Amsterdam, May 1992.
  • Kaandorp, J.: Fractal modelling, Growth and form in biology. Springer-Verlag, Berlin (1994).

Linky

Hore
Kontakty:     webmaster     admin     chief
Valid HTML 4.01! Valid CSS!